Fracture and Fatigue Crack Propagation in Graded Composites
نویسندگان
چکیده
The propagation of cracks in graded materials under monotonic and cyclic loading was investigated via experiment and simulation. Graded alumina/epoxy composite specimens exhibiting a variation in composition from 5% to 65% epoxy, representing a twenty-fold variation in Young’s modulus, across a region of width between 6 and 20 mm, were produced by a multistep infiltration technique. Crack initiation and propagation under monotonic and cyclic four-point bend loading was monitored and crack trajectories and growth rates were measured. Initial crack deflection was observed, in agreement with theoretical and computational predictions in the literature. Cracks exhibited further deviation as they traversed the graded region. Higher deflection angles were observed for specimens with steeper gradients, and for those with cracks initially located closer to the compliant side of the gradient. Homogeneous specimens in the composition range 5% to 55% epoxy were also produced to investigate the composition dependence of mechanical, fracture and fatigue properties for aluminaepoxy composites. Crack propagation resistance appeared to differ between monotonic and cyclic loading, though an increase with crack extension was observed in both cases. The significant variation in measured crack-propagation resistance, for cracks in graded specimens, was accordingly interpreted as a combination of crack-extension effect and spatial variation of both intrinsic and extrinsic crack-growth resistance. A finite element model has been developed to simulate the propagation process, with particular attention paid to crack propagation and deflection criteria. Results from homogeneous specimens were utilised for estimating spatial property distribution and crack-extension effects in the graded specimens. Experimental results for crack path and crack-growth resistance profile show good agreement with modeling predictions.
منابع مشابه
Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials
Zirconia-nickel functionally graded materials were obtained by powder metallurgy technique. The microstructure, residual stress, fracture toughness and Vickers hardness were investigated. Mixed-mode fracture response of YSZ /Ni functionally graded materials was examined utilizing the three point bending test and finite element method (Cosmos/M 2.7). The results show that the stress intensity fac...
متن کاملParticle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiCp composites
The effects of particle size, volume fraction and matrix strength on the stress-controlled axial fatigue behavior and the probability of particle fracture were evaluated for 2124 aluminum alloy reinforced with SiC particles. Average particle sizes of 2, 5, 9 and 20/~m and volume fractions of 0.10, 0.20 and 0.35 were examined for four different microstructural conditions. Tensile and yield stren...
متن کاملFatigue and corrosion fatigue properties of Ti-6Al-4V implant grade titanium alloy in Ringer solution
Nowadays modification of metallic biomaterials which are used as implants for bone and hard tissues replacement is considered as an important subject. In the current study, corrosion fatigue properties of Ti-6Al-4V alloy investigated via Rotating-Bending standard test method and then, the results compared with the fatigue properties of the specimens tested in the same conditions. Scanning elect...
متن کاملFatigue life predictions in polymer particle composites
This paper presents a study on fatigue life predictions in three polymer particle composites with different volume fractions of filler and different particle sizes. Central hole notched specimens were analysed using a fracture mechanics approach. A solution for the stress intensity factor of corner cracks at a hole was obtained using the finite element method and considering quarter-circular an...
متن کاملFractographic Analysis of Tensile Failures of Aerospace Grade Composites
This paper describes fractographic features observed in aerospace composites failed under tensile loads. Unidirectional Carbon Fibre Reinforced Plastic (UD CFRP) and Unidirectional Glass Fibre Reinforced Plastic (UD GFRP) composite specimens were fabricated and tested in tension. The morphology of fractured surfaces was studied at various locations to identify failure mechanism and characterist...
متن کامل